

Drection: Read the following statements and place them into your Vern dagram

Compare and Contrast Gas Laws

Gas Law	Relates	Equation	Unit
Boyle's	Pressure to Volume	$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$	L or kPa
Charles's	Temperature to Volume	$\mathrm{T}_{1} \mathrm{~V}_{2}=\mathrm{T}_{2} \mathrm{~V}_{1}$	K or L
Combined Gas law	Temperature, pressure and volume	$\mathrm{V}_{2}=\mathrm{V}_{1}\left(\mathrm{P}_{1} / \mathrm{P}_{2}\right)\left(\mathrm{T}_{2} / \mathrm{T}_{1}\right)$	K, L and kPa
Gay- Lussac's Law	Temperature and pressure	$\mathrm{P}_{1} \mathrm{~T}_{2}=\mathrm{P}_{2} \mathrm{~T}_{1}$	K or kPa
Avogadro's Law	volume to moles	$\mathrm{V}_{1} / \mathrm{n}_{1}=\mathrm{V}_{2} / \mathrm{n}_{2}$	kPa or
Ideal Gas Law	Pressure, volume, temp and moles	$\mathrm{PV}=\mathrm{nRT}$ and	$\mathrm{mV}=\frac{\mathrm{m}}{\mathrm{M}} \mathrm{RT}$

Boyle's Law

For a fixed mass of gas at constant temperature and pressure, the pressure is inversely proportional to the volume.

Charles' Law

For a fixed mass of gas at constant temperature and pressure, the volume is directly proportional to the temperature(K).

Pressure Law

For a fixed mass of gas at constant temperature and pressure, the pressure is directly proportional to the temperature(K).

$$
\frac{p_{1}}{T_{1}}=\frac{p_{2}}{T_{2}}
$$

Combined Gas Equation

$$
\frac{p_{1} V_{1}}{T_{1}}=\frac{p_{2} V_{2}}{T_{2}}
$$

The Mole(mol)

A Mole is the amount of substance that has the same no. of particles as there are atoms in 12 g of carbon 12.
or
A Mole of anything contains the Avagadro number of particles.
Avagadro's Number $\left(\mathbf{N}_{\mathbf{A}}\right)=6.022 \times 10^{23} \mathrm{~mol}^{-1}$

The 'equation of state' for an ideal gas is then given by:
$p V=n R T$

An 'ideal gas' is not a perfect model, but it is a good approximation.

The concept is based on the assumption that gas internal energy is only kinetic in nature.

The equation is accurate for real gases at low pressures and at temperatures
well above liquefaction.

Units
\boldsymbol{V} - volume cubic metres $\mathbf{m}^{\mathbf{3}}$
\boldsymbol{p} - pressure Pascals Pa (1 Pa = 1 Newton per square metre)
\boldsymbol{T} - temperature Kelvin K

