Properties of Fluids

1.4.1 Density

The density of a substance is the quantity of matter contained in a unit volume of the substance. It can be expressed in three different ways.

1.4.1.1 Mass Density

Mass Density, ρ , is defined as the mass of substance per unit volume.

Units: Kilograms per cubic metre, kg/m^3 (or $kg m^{-3}$)

Dimensions: ML⁻³

Typical values:

Water = $1000 \, kg \, m^{-3}$, Mercury = $13546 \, kg \, m^{-3}$ Air = $1.23 \, kg \, m^{-3}$, Paraffin Oil = $800 \, kg \, m^{-3}$.

(at pressure =1.013×10⁻⁵ Nm^{-2} and Temperature = 288.15 K.)

Specific Weight

Specific Weight ω , (sometimes γ , and sometimes known as *specific gravity*) is defined as the weight per unit volume.

0ľ

The force exerted by gravity, g, upon a unit volume of the substance.

The Relationship between g and ω can be determined by Newton's 2nd Law, since

weight per unit volume = mass per unit volume \times g

$$\omega = \rho g$$

Units: Newton's per cubic metre, N/m^3 (or Nm^{-3})

Dimensions: $ML^{-2}T^{-2}$.

Typical values:

Water = 9814 Nm^{-3} , Mercury = 132943 Nm^{-3} , Air = 12.07 Nm^{-3} , Paraffin Oil = 7851 Nm^{-3}

1.4.1.3 Relative Density

Relative Density, σ , is defined as the ratio of mass density of a substance to some standard mass density. For solids and liquids this standard mass density is the maximum mass density for water (which occurs at 4°c) at atmospheric pressure.

$$\sigma = \frac{\sigma_{\text{subs tan } ce}}{\sigma_{\text{H}_2O(at4^{\bullet}c)}}$$

Units: None, since a ratio is a pure number.

Dimensions: 1.

Typical values: Water = 1, Mercury = 13.5, Paraffin Oil =0.8.