Foundations of computer security

Norbert Oláh

2022.

RSA

Content

- Classic /Historical cypher encryption
- Algebrical structure
 - Residue class
 - Characteristic
 - Groups
- **RSA**
- Modular exponentiation

RSA

RSA

Substitution cypher

- Caesar cypher
 - plain text (m)
 - key (k)
 - cyphertext $c = (m + k) \mod 26 \rightarrow \text{english abc}$
 - decripted text $m = (c k) \mod 26$
- Keyword Caesar encryption
 - plain text (m)
 - key (k=8 security)

A B C D F F G H I J K I M N O P O B S T U V W X Y 7 OPOVXYZSECURITYABDFGHJKLMN

- comparing to the shifted alphabet it contains significantly more variations (n!, where n is the length of alphabet)
- cannot be sabotaged by rotation

Affin cypher

- Encrypting by letters
- The key is a pair of numbers K=(a,b) → GCD(a,26)=1
- c = (a * m + b) mod 26
- $m = (a_1 * c a_1 * b) \mod 26$ where $a_1 * a = 1 \mod 26$

Residue class

If $a \in \mathbb{Z}$, then the set of integers (mod m) congruent with a its called the (mod m) residue class represented by a.

Algebrical structure

•0000000000

Notation: $(a)_m$

 Z_n it's a kind of set which elements are residue classes

$$Z_6=(0)_6, (1)_6, (2)_6, (3)_6, (4)_6, (5)_6,$$

Residue class properties

- $(a)_m + (b)_m = (a+b)_m$
- $(a)_m * (b)_m = (ab)_m$
- if we implement a given operation containing any two set of residue class the result of the operation still remain within the set.
- Example:

$$(2)_6 + (5)_6 = (2+5)_6 = 1_6 (3)_6 + (3)_6 = 0_6 (4)_6 + (5)_6 = 3_6 (2)_6 * (5)_6 = 4_6$$

• They forming algebraic structure.

There is given an S = (x, y, z...) set and within this set an operation have been defined. (usually addition and multiplication)

- Semigroup
- Group
- Abelian group
- Ring
- Field

Addition and multiplication as the Characteristic of algebraic structures +, ·

Associative

The set of residue classes inherits the associative property of integers.

Example: (xoy)oz = xo(yoz).

Commutative

The set of residue classes inherits the commutative property of integers

Example: xoy = yox.

The addition and multiplication are both commutative among integers.

Characteristic of algebraic structures +, ·

 J neutral element (identity) We call any e element of S identity element or neutral element, if any cases of $x \in S$:

$$e \circ x = x \circ e = x$$

- $+(0)_m$ the neutral element that is $(a)_m+(b)_m=(0)_m$
- \cdot (1)_m the neutral element that is $(a)_m \cdot (b)_m = (1)_m$
- J inverse

If e identity exists in S and if such y element belongs to x, that $X \circ V = V \circ X = e$

then we call y the inverse of x.

In the set of real numbers the inverse of 2 is 1/2.

Characteristic of algebraic structures +, ·

Distributive

The set of residue classes inherits the distributive property of integers

$$x\Delta(y+z) = x\Delta y + x\Delta z$$
 and

$$(y+z)\Delta x = y\Delta x + z\Delta x$$

Among integers, the multiplication is distributive relating to the addition.

We call an S = x, y, ... set an algebriac structure if there is at least one operation is being defined in it.

Groups

Semigroup
 An S set is semigroup if the associative property is being defined in it.

Algebrical structure

00000000000

- Group
 An S set is group, if the associative property is being defined furthermore the neutral or identity elements exist and every element has its inverse.
- Abelian group
 An S set is an Abelien group, if the associative and commutative property is being defined in it furthermore the neutral or identity elements exist and every element has its inverse.

Group

Ring

Ring $(Z_m \text{ base set};+)$ $(Z_m \text{ base set};\cdot)$

associative associative commutative distributive

J identity commutative (ring with identity)

J inverse J identity (ring with identity)

test

Field $(Z_m \text{ base set;+})$ $(Z_m \text{ base set;-})$

associative associative commutative commutative

J identity J identity
J inverse J inverse

distributive

RSA

RSA

Exercise

- $Z_6=(0)_6, (1)_6, (2)_6, (3)_6, (4)_6, (5)_6,$
- $Z_5=(0)_5, (1)_5, (2)_5, (3)_5, (4)_5$

Exercise

Field $(Z_6 \text{ base set;+})$ $(Z_6 \text{ base set};\cdot)$ associative associative commutative commutative J identity J identity (0_{6}) J inverse J inverse $(0)6 \rightarrow (0)6$ $(1)6 \rightarrow (1)6$ (1)6 - > (5)6(2)6->no $(2)6 \rightarrow (4)6$ (3)6->no(3)6 -> (3)6(4)6->no(4)6 - > (2)6(5)6 - > (5)6

Algebrical structure

0000000000

(5)6 - > (1)6

Exercise

Field $(Z_5 \text{ base set;+})$ associative commutative J identity (0_5) J inverse (0)5 -> (0)5(1)5 -> (4)5(2)5 -> (3)5(3)5 -> (2)5(4)5 -> (1)5

(Z₅ base set;·) associative commutative

J identity

J inverse

$$(1)5 \rightarrow (1)5$$

 $(2)5 \rightarrow (3)5$

$$(3)5 -> (2)5$$

$$(4)5 -> (4)5$$

RSA

RSA

•000000

- It was published in 1977.
- Designers: Ron Rivest, Adi Shamir and Leonard Adleman
- It can be found in most Public Key Infrastructure (PKI) products, SSL / TLS certificates
- Secure email: PGP, Outlook

Asymmetric encryption scheme: AE = (Key; Enc; Dec)

- Key:
 - We randomly choose two large primes: p; q.
 - 2 Calculate the modulus of RSA: $n = p \cdot q$.
 - **3** We calculate the Euler ϕ function: $\phi(n) = (p-1)(q-1)$.
 - We choose a random e integer: $1 < e < \phi(n)$ and $(e, \phi(n)) = 1$. (e is the encryption exponent)
 - Calculate d: 1 < e < φ(n) and ed ≡ 1(modφ(n)). (d is the decryption exponent)</p>
 PK = (n; e), SK = d and φ(n); p; q secret parameters
 P = C = Z_n
- $Enc_{PK}(m) = m^e(modn)$ beside $\forall m \in P$ and PK = (n, e).
- $Dec_{SK}(c) = c^d(modn)$ beside $\forall c \in C$ and SK = d.

Euclid's algorithm

845	68	29	10	9	1	0
-	12	2	2	1	9	

Algebrical structure

That way the two numbers are relativ prime, ie.: (845, 68) = 1

RSA

0000000

Euclid's algorithm pseudo code

- Euklidesz(a, b, d)
- d ← a
- If($b \neq 0$)
- Then Euklidesz(b, a mod b, d)
- Return (d)

Extended Euclid's algorithm

The greatest common divisor of two integers a and b can be expressed by the numbers $x, y \in Z$ in the following form:

Algebrical structure

$$(a,b)=a*x+b*y$$

Always!

$$x_0 = 1 \ x_1 = 0$$

$$y_0 = 0 \ y_1 = 1$$

Formula:

$$x_{i+1} = x_i * q_i + x_{i-1}$$

$$y_{i+1} = y_i * q_i + y_{i-1}$$

$$x=(-1)^n*x_n$$

$$y=(-1)^{n+1}*y_n$$

k	0	1	2	3	4	
r_k	544	119	68	51	17	0
q_k	-	4	1	1	3	
X _k	1	0	1	1	2	
Уk	0	1	4	5	9	

$$(-1)^4$$
 and $(-1)^{4+1}$
17=544*2+119*-9

Extended Euclid's algorithm pseudo code

- ExtendedEuclid(a, b, d, x, y)
- x_0 ← 1, x_1 ← 0, y_0 ← 0, y_1 ← 1, s ← 1
- While $(b \neq 0)$
- $r \leftarrow a \mod b, q \leftarrow a \operatorname{div} b$
- $a \leftarrow b, b \leftarrow r$
- $\bullet \ x \leftarrow x_1, y \leftarrow y_1$
- $x_1 \leftarrow q * x_1 + x_0, y_1 \leftarrow q * y_1 + y_0$
- $x_0 \leftarrow x, y_0 \leftarrow y$
- S ← -S
- End While
- $\bullet (d,x,y) \leftarrow (a,x,y)$
- Return (*d*, *x*, *y*)

By using the following method shown in the example implementing relatively few operations we will get the value of a^b modulo m, where a integer, b integer is greater than 1 and m pozitive integer.

Algebrical structure

Algorithm:

1. step: The exponent is being written as a sum of the powers of 2:

$$b = 2^{b_1} + 2^{b_2} + ... + 2^{b_r}$$

2. step: Calculate the following value by the repeated squaring:

$$a^{2^0}, a^{2^1}, ... a^{2^r}$$

$$a^{2^{k+1}} = a^{2^k*2} = (g^{2^k})^2$$

3. step: We get the wanted power:

$$a^b = a^{2^{b_1}} * a^{2^{b_2}} * ... * a^{2^{b_r}} \pmod{m}$$

$$73 = 2^6 + 2^3 + 2^0$$

$$6^{2^0} \equiv 6 \pmod{100}$$

$$6^{2^1} \equiv 36 \pmod{100}$$

$$6^{2^2} \equiv 96 \pmod{100}$$

$$6^{2^3} \equiv 16 \pmod{100}$$

$$6^{2^4} \equiv 56 \pmod{100}$$

$$6^{2^5} \equiv 36 \pmod{100}$$

$$6^{2^6} \equiv 96 \pmod{100}$$

$$6^{73} = 6^{2^6} * 6^{2^3} * 6^{2^0} = 99 * 16 * 6 \equiv 16 \pmod{100}$$

Classic /Historical cypher encryption

129⁹⁷ (mod 171)

RSA

129⁹⁷ (mod 171)

$$97 = 2^6 + 2^5 + 2^0$$
 $129^{2^0} \equiv 129 \pmod{171}$
 $129^{2^1} \equiv 54 \pmod{171}$
 $129^{2^2} \equiv 9 \pmod{171}$
 $129^{2^3} \equiv 81 \pmod{171}$
 $129^{2^4} \equiv 63 \pmod{171}$
 $129^{2^5} \equiv 36 \pmod{171}$
 $129^{2^6} \equiv 99 \pmod{171}$
 $129^{97} = 129^{2^6} * 129^{2^5} * 129^{2^0} = 99 * 36 * 129 \equiv 108 \pmod{171}$

Modular exponentiation pseudo code

- Mod_exp(base, exp, mod)
- base = base%mod.
- if(exp == 0)
- return 0:
- else if(exp == 1)
- return base:
- else if(exp%2 == 0)
- return Mod_exp(base * base%mod, exp/2, mod);
- else
- return base * Mod_exp(base, exp − 1, mod) %mod;

Classic /Historical cypher encryption

Thank you for your attention!

RSA