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Classic /Historical cypher encryption
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Substitution cypher

@ Caesar cypher
e plain text (m)
o key (k)

cyphertext ¢ = (m + k)mod 26 — english abc
e decripted text m = (¢ — k)mod 26

@ Keyword Caesar encryption

@ plain text (m)

o key (k=8 security)
ABCDEFGHIJKLMNOPQRSTUVWXYZ
OPQVXYZSECURITYABDFGHJKLMN

e comparing to the shifted alphabet it contains significantly more
variations (n!, where n is the length of alphabet)

e cannot be sabotaged by rotation

Norbert Olah Foundations of computer security



Classic /Historical cypher encryption
oe

Affin cypher

@ Encrypting by letters

@ The key is a pair of numbers K=(a,b) - GCD(a,26)=1
@ ¢ = (a*m+ b)mod 26

@ m= (a; *xc—ay * b)mod 26 where a; * a = 1mod 26
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Residue class

If a € Z, then the set of integers (mod m) congruent with a its
called the (mod m) residue class represented by a.

Notation: (a)m

Z, it's a kind of set which elements are residue classes

Z=(0)6, (1)6, (26 (3)e: (4)6. (56>
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o] o]

Residue class properties

® (a)m+ (b)m=(a+b)m

° (a)m* (b)m=(ab)m

@ if we implement a given operation containing any two set of
residue class the result of the operation still remain within the
set.

@ Example:
(2)6 + (5)s = (2+5)6 =16 (3)6 + (3)6 = 06 (4)6 + (5)6 = 36
(2)s * (5)6 = 46

@ They forming algebraic structure.
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Algebraic structures

There is given an S = (x, y, z...) set and within this set an
operation have been defined. (usually addition and multiplication)
@ Semigroup
@ Group
@ Abelian group
@ Ring
o Field
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Addition and multiplication as the Characteristic of

algebraic structures +, -

@ Associative
The set of residue classes inherits the associative property of
integers.
Example: (xoy)oz = xo(yoz).

o Commutative
The set of residue classes inherits the commutative property
of integers
Example: xoy = yox.
The addition and multiplication are both commutative among
integers.
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Characteristic of algebraic structures +, -

@ J neutral element (identity)
We call any e element of S identity element or neutral
element, if any cases of x € S:
e0X=Xx0€e=X
+ (0)m the neutral element that is (a)m+(b)m=(0)m
- (1)m the neutral element that is (a)m-(b)m=(1)m
@ Jinverse
If e identity exists in S and if such y element belongs to x, that
Xo0y=yoXx=e,
then we call y the inverse of x.
In the set of real numbers the inverse of 2 is 1/2.

Norbert Olah Foundations of computer security



Algebrical structure
[o]e] ]

Characteristic of algebraic structures +, -

@ Distributive
The set of residue classes inherits the distributive property of
integers
XAy + z) = XAy + xAz
and
(y + 2)Ax = yAx + zAx
Among integers, the multiplication is distributive relating to the
addition.

We callan S = x, y, ... set an algebriac structure if there is at least
one operation is being defined in it.
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@ Semigroup
An S set is semigroup if the associative property is being
defined in it.

@ Group
An S set is group, if the associative property is being defined
furthermore the neutral or identity elements exist and every
element has its inverse.

@ Abelian group
An S set is an Abelien group, if the associative and
commutative property is being defined in it furthermore the
neutral or identity elements exist and every element has its
inverse.
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@ Ring
Ring (Z, base set;+) (Z, base set;)
associative associative
commutative distributive
J identity commutative (ring with identity)
J inverse J identity (ring with identity)

@ test
Field (Z, base set;+) (Zy base set;)
associative associative
commutative commutative
J identity J identity
J inverse J inverse
distributive
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Exercise
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Exercise

Field

Algebrical structure
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(Zs base set;+)
associative
commutative

J identity

(Os)

J inverse

(0)6 ->(0)6
(1)6->(5)6
(2)6 ->(4)6
(3)6->(3)6
(4)6->(2)6
(5)6->(1)6

(Zs base set;)
associative
commutative

J identity

J inverse
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Exercise

Field (Zs base set;+) (Zs5 base set;:)

associative associative
commutative commutative
J identity . .
(0s) J identity
J inverse J inverse
0)5->(0)5 (1)5 ->(1)5
(1)5->(4)5

(2)5 ->(3)5
(2)5 ->(3)5

(3)5 ->(2)5
8)5->(2)5 (4)5 ->(4)5
(4)5->(1)5
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@ It was published in 1977.
@ Designers: Ron Rivest, Adi Shamir and Leonard Adleman

@ It can be found in most Public Key Infrastructure (PKI)
products, SSL / TLS certificates

@ Secure email: PGP, Outlook
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RSA encryption scheme

Asymmetric encryption scheme: AE = (Key; Enc; Dec)
o Key:
@ We randomly choose two large primes: p; q.
@ Calculate the modulus of RSA: n=p - q.
© We calculate the Euler ¢ function: ¢(n) = (p—1)(g—1).
© We choose a random e integer: 1 < e < ¢(n) and
(e,¢(n)) = 1. (e is the encryption exponent)
© Calculate d: 1 < e < ¢(n) and ed = 1(modg(n)). (d is the
decryption exponent)
PK = (n; e), SK = d and ¢(n); p; g secret parameters
P=C=12,
@ Encpix(m) = m®(modn) beside Ym € P and PK = (n, e).

@ Decsk(c) = c?(modn) beside Vc € C and SK = d.
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Euclid’s algorithm

84568 129 |10|9|1|0
- 1212 |2 |1]|9
That way the two numbers are relativ prime, ie.:(845,68) = 1

Norbert Olah Foundations of computer security



RSA
[e]eZe] Tolele}

Euclid’s algorithm pseudo code

@ Euklidesz(a, b, d)

@ d«a

o If(b #0)

@ Then Euklidesz(b, a mod b, d)
@ Return (d)
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Extended Euclid’s algorithm

The greatest common divisor of two integers a and b can be
expressed by the numbers x, y € Z in the following form:
(a,b)=ax*x+bxy

Always!

Xo = 1 X1 = 0
Yo=0y =1
Formula:

Xi1=Xi * Qi + Xi—1
Yir1=Yi * qi + Yi-1

x=(=1)"= x,
y=(=1)""" % yn

Norbert Olah Foundations of computer security



RSA
0000000

extended Euclid’s algorithm example

k |0 1 2 |3 |4
rk | 544 | 119 |68 |51 |17 |0
gk | - 4 1 1 3
Xk | 1 0 1 1 2
Yk | O 1 4 |5 |9

(-=1)* and (—1)**"
17=544"2+119*-9
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Extended Euclid’s algorithm pseudo code

@ ExtendedEuclid(a, b, d, x, y)

@ Xg—1,X<0,y0<0,y1 1,51
@ While (b # 0)
@r—amodb,q«—advb
@a«—b,ber
@ X — X1,y < ¥
@ X1 «<—Qg*xXy+Xo, Y1 < qg*y1+ Yo
@ Xg—X, YoV
@ S« -5

@ End While

@ X —S*Xg, Y < —Yo
@ (d,x,y) < (a,x,y)
@ Return (d, x, y)
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Modular exponentiation

By using the following method shown in the example implementing
relatively few operations we will get the value of a® modulo m,
where a integer, b integer is greater than 1 and m pozitive integer.

Algorithm:

1. step: The exponent is being written as a sum of the powers of 2:
b =2br -2tz 4 obr

2. step: Calculate the following value by the repeated squaring:
a?,a?',..a%
k+1 Ky k|2
a2+ — 32 2:(92)
3. step: We get the wanted power:

b. b b
aP=a%" «a®”? «..+a®>" (modm)
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673 (mod 100)

73 =26 423 420

62" = 6 (mod 100)
62' = 36 (mod 100)
62-—96(mod100)
62 =16 (mod 100)

= 56 (mod 100)

= 36 (mod 100)
62-—96(mod100)

673 = 62° x62° x 62 =99« 16 + 6 = 16 (mod 100)
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Exercise

129% (mod 171)
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Exercise

129% (mod 171)

97 =26 4 25 4 20

1292° = 129 (mod 171)
1292' = 54 (mod 171)
1292° = 9 (mod 171)
1292° = 81 (mod 171)
1292" = 63 (mod 171)
1292° = 36 (mod 171)
1292° = 99 (mod 171)

12997 = 1292° x 1292° « 1292” = 99 « 36 * 129 = 108 (mod 171)
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Modular exponentiation pseudo code
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Mod_exp(base, exp, mod)

base = base%mod,

if(exp == 0)

return O;

else if(exp == 1)

return base;

else if(exp%2 == 0)

return Mod_exp(base = base%mod, exp/2, mod);
else

return base * Mod_exp(base, exp — 1, mod) %mod,;
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Thank you for your attention!
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